QUESTION 1

- a) Evaluate $2e^{-0.72}$ correct to 2 significant figures
- b) Simplify fully $\sqrt{27} + \sqrt{48} 2\sqrt{75}$ 2

2

2

2

3

3

- c) Solve |2x + 3| = 3x
- d) Find the value of θ correct to the nearest degree

- e) Solve $5 5x \le 4$ 2
- f) Find the limiting sum of the geometric series $2 \frac{2}{3} + \frac{2}{9} \frac{2}{27} + \cdots$ 2

QUESTION 2 (START A NEW PAGE NOW)

- a) Differentiate with respect to *x*:
- (i) $x^{2} \cdot \cos x$ (ii) $tan^{2}(4x + 1)$ b) Find $\int \frac{x}{3x^{2}+1} dx$ 2
- c) Evaluate $\int_{0}^{\frac{\pi}{9}} \sin 3x \, dx$
- d) The diagram below shows a sketch of the curve y = f(x).

Copy the diagram onto your answer sheet and use it to draw a sketch of the gradient function y = f'(x)

QUESTION 3 (START A NEW PAGE NOW)

a) The diagram (not to scale) shows $\triangle ABC$ with vertices A(-2,2), B(-1,-5) and C(6,-6)

Copy the diagram neatly onto your answer sheet

(i)	P is the midpoint of AC. Show that the coordinates of P are (2,-2).	1
(ii)	Find the gradient of BP.	1
(iii)	Show that BP is perpendicular to AC.	2
(iv)	Show that the equation of BP is $y = x - 4$.	1
(v)	Find the coordinates of D, if P is the midpoint of BD.	2
(vi)	Which shape best describes the geometric figure ABCD? Explain.	2

b) Find the value(s) of k such that the roots of

$$x^{2} + (3k+1)x + 4k + 5 = 0$$
 are real and equal. 3

QUESTION 4 (START A NEW PAGE NOW)

a) In the diagram, $\angle B = 90^{\circ}$, $\angle A = 60^{\circ}$ and AB=AD=10m. BD is an arc of the circle with centre A

Calculate the shaded area in exact form.

3

- b) In an arithmetic progression, $T_2 = 7$ and $T_7 = 52$.
 - (i) Find the common difference and the first term. 2
 - (ii) Find the **value** of the first term which is greater than 1000.
- c) α and β are the roots of $2x^2 9x 3 = 0$. Find the value of:

(i)	$\alpha + \beta$	1
(ii)	lphaeta	1
(iii)	$\alpha^2 + \beta^2$	1
(iv)	$\alpha^3 + \beta^3$	2

QUESTION 5 (START A NEW PAGE NOW)

a) Find the coordinates of the point on the curve $y = 3x^2 - 2x - 1$ where the tangent is parallel to

	4x - y - 1 = 0.	3
b)	Solve $\sin x = \frac{1}{2}$ where $0 < x < 2\pi$	2

c) Evaluate

$$\sum_{n=4}^{7} \frac{1}{n-2}$$

d) The equation $(x - 1)^2 = -4y + 2$ represents a parabola.

(i))	Find the coordinates of the vertex.	1
(ii)	Find the focal length.	1
(ii	i)	Sketch the parabola, clearly showing the directrix, the focus and the x-intercepts	4

QUESTION 6 (START A NEW PAGE NOW)

a) ABCD is a parallelogram and P, Q are the midpoints of AB, DC respectively. The intervals PR and QS are perpendicular to the diagonal DB.

- (i) Prove $\triangle BPR$ and $\triangle DQS$ are congruent.
- (ii) If AB=10cm, PR=3cm and BD=14cm find the length of SR.

3

2

1

- b) (i) Sketch the graph of y = 2 cos 2x for -π ≤ x ≤ π.
 (ii) On the same diagram, sketch the line x + y = 1.
 (iii) Hence determine the **number** of solutions of the equation 2 cos 2x = 1 x.
 (iv) Let the negative solution to 2 cos 2x = 1 x be x = N. Indicate N on the x-axis of your diagram.
 c) Calculate the exact area of the region bounded by the curve y = e^{2x}, the y-axis and the
 - line $y = e^4$.

QUESTION 7 (START A NEW PAGE NOW)

- a) A circle has radius 2 cm. Find the size of the angle subtended at the centre of this circle by an arc of length 2.2 cm. Answer correct to the nearest minute .
- b) Solve $log_e x log_e (x 4) = log_e 2$ 2
- c) Find all values of k for which $y = e^{kx}$ is a solution of $y'' y' 12y \ge 0$ 4
- d) In the diagram (not to scale), CD is parallel to AB and DE is parallel to CA.
 AC=15 cm, AB=22 cm, CD=8 cm and BE=12 cm.

(i) Prove triangle ABC is similar to triangle DCE

2 2

(ii) Hence find the length of BC

a) (i) Show that
$$\int_0^2 \frac{1}{1+x} dx = \ln 3$$
 1

- (i) Hence use Simpson's rule with three function values to find an approximation to ln 3.
- b) The region bounded by the parabola $y = x^2$ and the circle $x^2 + y^2 = 12$ is shown. The parabola and circle intersect at P and Q.

2

- (i) P and Q have the same *y*-coordinate. Find its value. 1
- (ii) Find the exact value of the solid generated when the shaded region is rotated about the y-axis.5
- c) Kim and Lee toss a biased coin alternately, with Kim going first. The probability that the coin shows 'heads' on any toss is $\frac{1}{3}$. The first person to throw a head wins the game. What is the probability that:

(i)	Kim wins the game on her first throw?	1
(ii)	Lee wins on his first throw?	1
(iii)	after 4 tosses of the coin, there is no winner?	1

QUESTION 9 (START A NEW PAGE NOW)

a) The diagram shows the velocity-time graph for a particle moving in a straight line.

State the times between t=0 and t=8 at which:

(i)	The velocity is zero	1
(ii)	The acceleration is zero	1
(iii)	The speed is increasing	2

- b) The population of Town a is $P_A = 8000e^{0.02t}$ while the population of Town B is $P_B = 12000e^{-0.01t}$, where t is the time in years. How many years will it be until the two populations are equal? Answer correct to 1 decimal place.
- c) When Susan was born, her father deposited \$200 into a Trust account earning 12% p.a. interest compounding annually. The interest is paid on her birthday each year. Susan's father decided to deposit an additional \$200 into this account on her birthday each year, immediately after the interest is received.

2

(i) Find the value that the initial deposit would amount to on her
$$18^{th}$$
 birthday. 1

(ii) Let
$$A_n$$
=total amount in her account on her nth birthday
Show that $A_n = \frac{5000(1.12^{n+1}-1)}{3}$ 3

(iii) Susan's father made his last deposit of \$200 on her 17th birthday. On her eighteenth birthday, he gave all the money in the account to Susan. How much money did she receive? 2

- a) The gradient function of a curve y = f(x) is given by $f'(x) = x^2(3 x)$.
 - (i) Show that the curve y = f(x) has two stationary points and determine their nature. 4
 (ii) If f(0) = 2 and the maximum value of f(x) is 8³/₄, draw a possible sketch of

2

1

$$y = f(x)$$

b) A circular window of radius √5 metres requires three metal strips AB, DC and FG for reinforcement as shown. O is the centre of the window, and OF=OG=y metres and FB=FA=CG=GD=x metres.

(i)	Given that L is the total length of the metal strips (ie. L=AB+CD+FG) show that			
	$L = 4x + 2\sqrt{5 - x^2}$			
(::)	The same demonstration of the second	1		

(ii) The window will have maximum strength when the total length L is a maximum. Find the value of x for which the window has maximum strength. 5

End of examination

QUESTION 1	Solutions	2 Unit	Trial 2010
a) 0.973504 = 0.97 (2	S 2 <i>s</i> {)	$\begin{array}{c} (1) \\ (2) \\ (3) \\$	stal /120
6) 313 + 413	- 10 13	2) -1	
c) $2\pi + 3 = 3\pi$	= ar 2x+.	3 = - 3z	
3 = × Text	5 _x	= -3	() batta
$\frac{LH5 = /G + 3/}{RHS = 3 \times 3}$	= 9 Test = 9 LH3	$\frac{1}{5} = \frac{1}{5} = \frac{4}{5} = \frac{3}{5}$	
	RHS 24 = 3 only	a - 4 5	U) final
d) 5	/2		\$o/A_s
540 -	sin 73		
e) - 5x < -1	23	(') >	
x > 4 5		>	
f, $a=2$, r		//	
	= 1.5		

QUESTION 4 a) Area shaded $= \frac{1}{2} \cdot \frac{10}{R^3},$ 100 11 = 5.BC tan 60 = BC BC = 10 ton 60 Non =11052 - Area = -5 x 1053 - 10077 (L) (50J3) - 50TT $T_2 = a + d = 7$ $T_{+} = a + bd = 52$ 5d = 45 d=9 (I) a+9=7 a=-2 T = a + (n - 1) d= -2 + (n-1).9= -2 + 9n - 9= 92-11 > 1000 when 9171011 A 7 112.3 = 9(113) -11 = 1006 1

c) $2x^2 - 9x - 3 = 6$ (1)2B=T $= (\alpha + \beta)^2$ (\ddot{u}) $\left(\frac{9}{2}\right)$ 234 05 93 $(iv) = \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \alpha\beta + \beta^2)$ = 111.375 891 dr UESTION m = dy6x -2 Line has m=4 6x - 2 = 462 = 6 $y = 3(1)^2 - 2(11 - 11)$ At point (1,0) (2) [leach] =1 for degrees. $\frac{1}{3} + \frac{1}{4} + \frac{1}{5} = 1\frac{17}{60} \text{ or } \frac{77}{60} (1)$ + ---2

loge x-4 = loge (1)2-4 z = 2z - 88 = x (1)kz kekz - 12ekt 20 = ke kx (1) 2, k× (1) K1 - K - 12) 20 (1)(k-4)(k+3) >0 kx and factorise Roots : k = 4 - 3 Sola: 1 3 4 kx-3 (1) d) (i) LDCE = LABC (alternate Ls, AB//DC) +(+) ----LCED = LACZ (alternate 15, AC//DE) SABCIII ADCE (matching Ls equal) (1) (i) Let EC = x (T)2+12 ||x| = 4x + 4872 = 48 x = 48 $\frac{A}{7} BC = 12 + 48 = 132$

O QUESTION 8 $\int_{0}^{2} \frac{1}{1+z} dx = \left[l_{n} \left(1+z \right) \right]$ (1) $(ii) \propto |0|$ (1) -y-= $l_{n} 3 = \frac{h}{3} \left(y_{0} + 4y_{1} + y_{2} \right)$ $= \frac{1}{3} \left(1 + 4 \times \frac{1}{2} + \frac{1}{3} \right)$ (1) = 10 b) (i) $y=x^2$, $x^2+y^2=12$ = 0 (y+4)(y-3) = 0 or y=3 (1) <u>'</u>3 y dy 12 - y2. dy Limits, 3, J12 : (124 - 43 - 112 (1) = 11 = $TI\left(\frac{12\sqrt{12}}{3}-\frac{12\sqrt{12}}{3}\right)-(36-9)$ $= \pi (8.52 - 27)$

() $= \pi (16\sqrt{3} - 27)$ $A = 200 (1.12)^{18} = 1537.99 (1) (1)(1)". Total val = V, +V A = 200(1.12) + 200 $= 9\pi + \pi (16J3 - 27) (1)$ A = A × 1.12 + 200 = 200 (1.12) 2 + 200 (1.12) + 200 Perelopme $= \pi \left(\frac{9}{2} + 16\sqrt{3} - 27 \right)$ A3 = A2 × 1.12 + 200 (τ) $= 200(1.12)^{3} + 200(1.12)^{2} + 200(1.12) + 200$ = TT (16J3 - 45) = 200 (1.12³ + 1.12² + 1.12 + 1) (i) ¹3 (1) 2/3 × 1/3 = 2/9 05 Continuing the pattern: $A_{\pm} = 200 (1.12^{+} + 1.12^{-1} + ... + 1.12 + 1)$ (*ïi*.) $\left(\frac{2}{3}\right)^{4}$ $= \frac{16}{81}$ -(-) = 200 × 1 (1.12 -1) geon serie QUESTION 9. t = 1.5 r = 1.12 $= 200 \times (1.12^{+1} - 1)$ t = 3.7(n+1) tecm (1)<u>iii) v pos</u> S = a (r^-1) 1 < t < 3 2+1 0.12 a pos 5000(1.12"+"-1) 5 . 01 r neg 5< E < 7 (1)neg (111) Find ant = A x 1.12 or A - 200 0.02t 8000 e = 12 000 g 0.03t (1) = 1.5 =\$11 150 × 1.12 6 r \$ 12688-200 0.03t = 1.5(2) t = la 1.5 = 13.5 yrs (1)-= \$12488 -1 if out by 200 0.03

 1^{\sim} QUESTION 10 $f'(x) = x^2(3-x) = 0$ ()2x ()when a) in Stat (1)x = 3 $\chi = 0$ 5-2 Testing 1x = 24, 5-x2 0 -1 x Square : Horizontal pt of f'(x) + 0inflex when x=0. = 4 (5 - 22 12(3-1) (1) $(-1)^2 \cdot (3+1)$ $x^{2} = 20 - 4x^{2}$ = 1 × 4 = 1×2 $5x^2 = 20$ 2² : Max turn pt = 4 3 4 2 X h.t 2020 at x=3 $x = \pm 2$ f'(x) + 0Ci ()2 $4^{2}(3-4)$ 273-1) L Testing with since L' is mess = 16x-1 = 4 × 1 . -- [Cuit test with 2 2.1 83 (ii)× 11 + 0 (2)R 4 - 4.2 (2) 4 -15-4.41 Deduct 1 if uncle 6 25 = max 6 blin L = AB + CD + FG $x^2+y^2=5$ bit 2x + 2x +24 4= 5-22 $= 4x \pm 2\sqrt{5-x^2}$ α ∟″ L' = 0 (ii) For and max $\frac{1}{z}(S-z^2)^{-2}$ (1) 2 x L'= 4 = 0 mhen ... 22

If they use
$$L''$$
 (not recommended)
 $L' = 4 - \frac{2\pi}{5-\pi^2} (5-\pi^2)^{\frac{1}{2}} \cdot u = 2\pi \quad u' = 2$
 $v = (5-\pi^2)^{\frac{1}{2}} v' = -\frac{1}{2}(5-\pi^2),$
 $L'' = 0 - (2\pi \cdot \pi \cdot (5-\pi^2)^{-\frac{3}{2}} + (5-\pi^2)^{\frac{3}{2}} + (5-\pi^2)^{\frac{3}{2}}$

$$\frac{-2x}{(5-x^2)^{3/2}} - \frac{2}{\sqrt{5-x^2}}$$
(1)

$$= \frac{-4}{|^{3/2}} - \frac{2}{\sqrt{5-4}} \quad \text{when } x = 2$$

= -4 - 2 (1)